Difference between revisions of "Gameplan Repair"
Line 77: | Line 77: | ||
<br><br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br><br> | ||
That’s it. The board is now ready to take standard 2716s which you can simply pop into the sockets and they will be used by the machine. | That’s it. The board is now ready to take standard 2716s which you can simply pop into the sockets and they will be used by the machine. | ||
+ | ====ROM Sizes, Cutting, Strapping, Compatibility Issues==== | ||
===MPU boot issues=== | ===MPU boot issues=== |
Revision as of 14:16, 6 July 2015
Note: This page is a work in progress. Please help get it to a completed state by adding any useful information to it. |
For history of Gameplan see Gameplan.
1 Introduction
GamePlan made pinball machines from 1978-1985. Their first pinball machines were cocktail size. The first full-size pinball machine was SharpShooter designed in 1979 by Roger Sharpe. The last pinball machine produced by GamePlan was called the Loch Ness Monster and only one was produced. The machine still does exist today in a private collection. GamePlan also made one widebody pinball machine called Global Warfare, which was designed by Roger Sharpe as well. The artwork was created by John Trudeau. Only ten Global Warfare machines were produced. Roger didn't realize that this design had ever been put into production until being presented with one during pinball expo.
2 Games
- Agents 777
- Andromeda
- Attila the Hun
- Black Velvet (cocktail)
- Camel Lights (cocktail)
- Captain Hook
- Challenger
- Chuck-A-Luck (cocktail factory conversion of Real)
- Cyclopes
- Family Fun (cocktail)
- Foxy Lady (cocktail)
- Global Warfare (widebody)
- Lady Sharpshooter (cocktail)
- Loch Ness Monster (prototype)
- Mike Bossy the Scoring Machine (never produced)
- Old Coney Island!
- Pinball Lizard
- Real (cocktail)
- Rio (cocktail)
- Sharp Shooter II
- Sharpshooter
- Star Trip (cocktail)
- Super Nova
- Vegas (cocktail)
3 Technical Info
GamePlan utilized the Z80 microprocessor as their CPU of choice for all of their games. The early cocktail pins used the MPU-1 board, and the full-size machines used the MPU-2 board. The only difference is the amount of RAM. GamePlan used individual driver boards for the solenoids (the SDU-1 board) and lamps (LDU-1 and LDU-2 boards). The displays on all GamePlan machines are LED displays and hold up quite well because of this. The sound system did change frequently, starting out with Chime units in the early cocktails, to solid state "hard-wired" sound boards, to sound boards that were designed using the Motorola 6802 processor (MSU-1, MSU-2).
3.1 Switch Matrix
4 Problems and Solutions
With GamePlan using individual boards for everything, interconnects tend to be a culprit for many problems. Before you do anything, you should first unplug all boards, and check the voltages on the power supply.
4.1 Power Problems
First and foremost, replace the big capacitor! This fix a lot of issues with GamePlan pins. The actual capacitor value in this PSU-1 power supply varies, as some machines were shipped with the 25v 11,000 capacitor (typically the silver color) and some were shipped with a 15,000 25v capacitor (typically a blue color). Make note of the polarization of the capacitor, cut off the screw mounts (or desolder them), and replace the capacitor with either another screw mount or through-hole design. If through-hole, just use some hookup wire to jumper the capacitor to the circuit board.
4.2 MPU ROMs
4.2.1 Modifying the MPU-2 Board for 2716s
Early MPU-2 boards came from the factory configured for 2316-type masked PROMs. With any sort of corrosion or tarnishing of the pins, these ROMs could very likely be damaged and unusable. Below are a pair of original ROMs from an Old Coney Island - notice the tarnishing on the pins.
The easiest thing to do is get a new set of standard 2716 ROMs. The good thing about the MPU-2 board is that it is designed to accommodate 2316s, TMS2716s, standard 2716s, 2532s or 2332s with a few simple board modifications. With a little more work the board can also handle 2732s (more on this later). MPU-1 boards can also be cut and strapped for 2716s but the procedure to do so is different than what's outlined below. Standard 2716s are best since they are easily available, and most EPROM programmers can handle them.
To set the board to use 2716s simply requires cutting two traces and installing two jumpers. This process breaks the ground connection to pin 21 of the ROMs bringing 5v instead and drives the logic level correctly for reading 2716s. Trying to interpret the schematics for what to do here is a challenge, to say the least but it is easy to do if you can see what needs to be done. Three steps are done on the component side of the board (steps 1, 2 & 4 below) and one step is done on the solder side (step 3.) Here’s the photo guide to how to do it.
Step 1 - First thing you need to do is cut a trace on the component side of the board. There is a via which is between pins 35 and 34 of the Z80 that then connects to pin 21 of the ROMs. You’ll know this is connected because you can test for continuity between test point 7 (ground) and pin 21 on any of the three ROM sockets. Cut the trace carefully next to the via with a Xacto knife, insuring you don’t damage the traces on either side of the via. If you don’t want to cut the trace you can remove the solder from the hole and drill it out with a tiny drill – you just need to break the connection from one side of the board to the other. You’ll know you’ve successfully cut the trace by testing for continuity between TP7 and pin 21 on any of the three ROMs – there shouldn’t be any.
Step 2 – Next, on the component side, install a jumper between the two pads below U26. This brings 5v to pin 21 which is required to read the 2716s. Using a cut off lead from a resistor is the easiest way to make this jump. Remove solder from the holes, install the cut off lead, solder it in place and trim. You’ll know this is working because you should now have continuity between TP1 and pin 21 on any of the ROMs.
Step 3 – Now, on the solder side of the board cut the trace that goes to pin 8 on U24. You’ll see a mark on the board that indicates what to cut. When you’re done, there should be no continuity between pin 8 on U24 and pin 18 of U13.
Step 4 – Now back on the component side of the board install another jumper between the two pads above U24 as shown – this is the bypass for U24 to provide the correct logic level at pin 18 of U13. You’ll know this is working if you have continuity between pin 8 at U25 and pin 18 of U13.
That’s it. The board is now ready to take standard 2716s which you can simply pop into the sockets and they will be used by the machine.
4.2.2 ROM Sizes, Cutting, Strapping, Compatibility Issues
4.3 MPU boot issues
4.3.1 Relocating the battery from the MPU board
4.3.2 Repairing Alkaline Corrosion
The #1 problem found on gameplan machines is the 3.6v NiCad battery mounted to the MPU board exploding, causing acid damage to the traces around. Early GamePlan pinball machines (SharpShooter, ConeyIsland, SuperNova) mounted the board vertically which the battery fluid would damage mostly the reset circuitry. For the rest of the games that have the board mounted horizontally (Attila, 777, Lizard, Global Warfare, Cyclopes, etc.), the damage tends to be worse, as the traces and sockets for the roms, cpu, and ctc are damaged. If you have an acid damaged board, it is possible to recover it, but it takes lots of time and patience. The best place to check out the procedure is John Robertson's page Battery Leakage Repair
4.3.3 Connecting a logic probe to the MPU
4.3.4 Using a PC Power Supply For Bench Testing
4.3.5 Other MPU Repair Guides
4.4 Game resets
4.5 Solenoid problems
4.6 Lamp problems
4.7 Switch problems
4.8 Display problems
4.9 Sound problems
4.10 Flipper problems
4.11 Pop bumper problems
5 Parts Substitutions & Replacements
Since there aren't really any sources for spare Gameplan parts other than other Gameplan machines, broken or worn out parts typically have to be substituted using mainly commonly available classic Bally and Gottlieb parts.
5.1 Aftermarket Replacement Boards
5.1.1 MPU
Aftermarket replacement MPU boards can be obtained from here:
Jim Francesangeli
Echo Lake Pinball Service & Sales
925 Marwin Dr.
Hinckley, Ohio 44233
Tel: 330-278-2228
Boards are built in batches and not always available on-demand, so you may have to request to be added to a wait list before another batch of boards is built
5.2 Shooter Assembly
5.2.1 Housing
The beehive housing part # 4A-115-W is a direct replacement for the beehive housing found on Gameplan games. This can be obtained from marcospecialties.com, pinballlife.com, or pbresource.com
5.2.2 Shooter Rod
5.3 Pop Bumpers
5.4 Slingshots
5.5 Drop Targets
There are two general approaches to substituting broken Gameplan drop targets, and each method has its advantages and disadvantages. One uses Gottlieb drop targets, the other uses Data East drop targets
5.5.1 Gottlieb Drop Target Substitution
Gottlieb Drop targets can be used as a near match for Gameplan drop targets, however, they will need to be modified. The slot in the center of the target will need to be lengthened. This is to ensure that the lift arm doesn't jam when the target is raised or dropped. This slot can be enlarged with a dremmel tool. Stack 2-3 blades to match the width of the slot, then lengthen the hole as necessary.
Additionally, a strip of foam or beer seal may be necessary on the reset bar in order to fully reset/raise the Gottlieb target. However, be mindful about not raising the target too high so as to avoid breaking off the foot of the target when it gets reset by the solenoid.
This approach can potentially weaken the drop target and make it more prone to breakage. However, Gottlieb targets are a close enough size match that they can be used side-by-side with Gameplan targets (after the slot modification). Additionally, Gottlieb targets can be obtained in similar colors.
5.5.2 Data East Drop Target Substitution
1/4" spacers (or stacks of washers totaling 1/4" in height) will need to be added between the drop target cage and the bottom of the playfield. Additionally, wood screws that are 1/4" longer are also recommended to accommodate the spacers.
Data East drop targets only come in white, and cannot be color matched to the original Gameplan drop targets (however, there is a technique to dye plastic parts that might work). Also, because of the height change required to accommodate these drop targets, and the larger face size of the targets, the Data East drop targets can not be mixed and matched with original Gameplan drop targets.
Despite these drawbacks, this is the easier substitution approach since it doesn't require the modification of the drop targets themselves, unlike with Gottlieb drop targets.
5.6 Drop Target Cage
If most or all of the Gameplan drop targets are unusable, instead of substituting individual targets, it is sometimes possible to replace the entire Gameplan drop target cage with a Gottlieb drop target cage that has the appropriate number of spaces for targets.
5.7 Flipper Assembly
Some flipper assembly parts can be substituted. However, there have also been unverified discussions about retrofitting WPC flipper assemblies to replace the original Gameplan assemblies.
5.7.1 Flippers
The plastic flippers can be substituted with a white Bally pre-1987 flipper & shaft. Part number: A-3994-5. This can be found on marcospecialities.com, pbresource.com, and likely with a few other vendors.
5.7.2 Bushing
A direct replacement is carried by marcospecialities.com as part number: 03-40001A.
5.7.3 Link
No direct substitution currently available, however you can cut and drill your own replacement. PBResource offers link material as part designation: MAT-LINK
5.7.4 Coil Stop
Coil stops on all Game Plan machines are shared between all mechanisms with the exception of the drop target coils.
The flippers, power (jet) bumpers, slings, ball kick out and ball kicker all use part # 10-00009A "plunger stop bracket". If you have access to a parted machine and need new flipper stops, oftentimes the ones from the slings have little wear on them and can be used as a replacement.
A possible substitution might be Gottlieb part GTB-A5189+ from PBResource.com, but this is currently unverified.
5.8 Solenoids/Coils
All coils are 24VDC. Most Gameplan coils are available from PBResource.com
- 21-50001B used for single drop target and pop bumpers (a Gottlieb A-5194 is a close substitute). This coil uses sleeve # 03-40008N (same as Williams # 03-7066-2).
- 21-50002B used for flippers (a Gottlieb A-17875 should work as a substitute). This coil uses sleeve # 03-40008N (same as Williams # 03-7066-2).
- 21-50003B used for knocker and slingshot kickers (a Gottlieb A-19300 is a close substitute). This coil uses sleeve # 03-40008N (same as Williams # 03-7066-2) when used for slingshots. When used for knockers use sleeve # 03-40012N (same as Williams # 03-7066-4).
- 21-50004B used for chimes (a Gottlieb A-26450 is a close substitute). This coil uses sleeve # 03-40027N (same as Williams # 03-7067).
- 21-50005B used for ball return outhole (a Gottlieb A-16570 is a close substitute). This coil uses sleeve # 03-40008N (same as Williams # 03-7066-2).
- 21-50006B used for ball return outhole (a Gottlieb A-17876 is a close substitute). This coil uses sleeve # 03-40008N (same as Williams # 03-7066-2).
- 21-50007B used for large drop target bank reset (no substitutes available). This coil uses sleeve # 03-40038A (no substitutes available).
- 21-50008B used for flippers (a Gottlieb A-24161 should work as a substitute). This coil uses sleeve # 03-40008N (same as Williams # 03-7066-2).
- 21-50009B used for large drop target bank reset (no substitutes available). This coil uses sleeve # 03-40038A (no substitutes available).
6 Repair Logs
Did you do a repair? Log it here as a possible solution for others.