Difference between revisions of "Gottlieb System 3"
Line 489: | Line 489: | ||
===Power Problems=== | ===Power Problems=== | ||
− | + | ====Line Voltage==== | |
+ | ====Low Voltage==== | ||
+ | =====+5VDC Logic Voltage===== | ||
+ | Logic voltage issues start with the +5vdc power supply. A simple fix is to replace the 500 ohm 1 watt pot used to adjust the +5vdc. The original factory pot was a not a sealed pot. Dirt, dust and contaminants can get into the pot and foul it. The result is either dead spots on the pot, or total failure. | ||
<br clear=all> | <br clear=all> | ||
Revision as of 06:36, 17 July 2011
Note: This page is a work in progress. Please help get it to a completed state by adding any useful information to it. |
1 Introduction
Put system info here
2 Game Listing
2.1 Alpha-Numeric
- Lights Action Camera
- Sliver Slugger
- Vegas
- Deadly Weapon
- Title Fight
- Nudge-It
- Bell Ringer
- Car Hop
- Hoops
- Cactus Jack
- Class of 1812
- Amazon Hunt III
- Surf'n Safari
- Caribbean Cruise
- Operation Thunder
2.2 Dot Matrix
- Super Mario Bros
- Super Mario Bros: Mushroom World
- Cue Ball Wizard
- Street Fighter II
- Tee'd Off
- Gladiators
- Wipe Out
- World Challenge Soccer
- Rescue 911
- Freddy: a Nightmare on Elm Street
- Shaq Attaq
- Stargate
- Big Hurt
- Waterworld
- Strikes N Spares
- Mario Andretti
- Barb Wire
- Brooks & Dunn
- Casino Royale
3 Technical Info
3.1 The System 3 Board Set
3.2 System 3 Satellite Boards
3.3 The Wire Coloring Code
Unlike every other pinball manufacturer, which adopted a two-color wiring code system, Gottlieb used three colors. Most wiring in a Gottlieb game used a white base color, which is the wire's insulation color, and three "striped" traces on each wire. I state most cases, because there is one wire which only use one color. The white ground wires used in System 3 games with no trace at all. Below is the Gottlieb color chart.
# | Color |
---|---|
0 | Black |
1 | Brown |
2 | Red |
3 | Orange |
4 | Yellow |
5 | Green |
6 | Blue |
7 | Purple |
8 | Gray |
9 | White |
Does the color chart look familiar? Well, if you have an electronics background, it should. The Gottlieb wire code system is the same as the resistor color coding system.
Here are some examples of the color coding system. The color wire code for switch / lamp strobe line 0 is 400. 400 would be a white insulated wire with a yellow trace and two black traces, or commonly referred to as a yellow-black-black wire. The ground lines are 0 which is just plain white with no traces.
3.4 Connector Designations
All Gottlieb System 3 machines have a common naming convention for all of the connectors in the game. A specific connection uses two parts - a prefix and a suffix. The prefix is the board number or an inline wire junction, and the suffix is the connection on the board or a sequential wire junction number. When referencing a specific connector pin within a housing, a dash follows the connection number. For example, the connector pin for the slam switch signal on the CPU board is A1J5-11. The coin door connection used on Shaq Attaq is A10P1 and A10J1 - the connector pin for the slam switch on the coin door is A10P1-5.
The following boards are assigned the same numbers throughout the System 3 platform.
- CPU Board - A1
- +5VDC Power Supply - A2
- Driver Board - A3
- Sound Board - A6
There are several other board designations used, however, they are different between games which use an alphanumeric display and a dot matrix display (DMD).
3.5 Switch Matrix
The Gottlieb System 3 switch matrix consists of a maximum of 108 switches. There are a total of 12 switch strobes and 8 switch returns. The strobe lines start at 0, increment consecutively to 9, and two more strobes are added named A and B respectively. The return lines start with 0 and end with 7. Typically but not always the case, if a game has opto switches and / or Smart Switches, they are located on the higher strobe lines. Strobe A and B are the most common strobe lines where an optic switch or Smart Switch would reside on the switch matrix. The notation of "**" on the switch matrix chart denotes that the switch used is a Smart Switch. It is extremely rare, if it even occurs, where every switch in the matrix is used on any one System 3 game. Gottlieb rarely used the System 3 switch matrix to its full capacity.
Just like the System 80 switch numbering system, the System 3 switch numbers have the same naming convention. With Gottlieb System 3 switches, the first number of the switch is its strobe number, while the second number is the switch's return number. An example would be switch 54. Switch 54 is located on strobe 5 and return 4 of the switch matrix.
There is one aspect of the Gottlieb System 3 switch matrix which makes it markedly different from any other manufacturer. The System 3 switch strobe lines and the lamp strobe lines are shared by the same lines. Due to this design, all switch strobes originate at connector A3J3 of the driver board, and all switch returns are connected to A1J5 of the CPU board. Because of the shared strobe design, this can make troubleshooting a switch matrix strobe issue more difficult at times.
Once again, the now normally open slam switch is not on the switch matrix. Equally, the test and tilt switches have moved off of the switch matrix, and have become dedicated switches.
Strobe 0 (A3J3-9) |
Strobe 1 (A3J3-10) |
Strobe 2 (A3J3-11) |
Strobe 3 (A3J3-12) |
Strobe 4 (A3J3-13) |
Strobe 5 (A3J3-14) |
Strobe 6 (A3J3-6) |
Strobe 7 (A3J3-5) |
Strobe 8 (A3J3-4) |
Strobe 9 (A3J3-3) |
Strobe A (A3J3-2) |
Strobe B (A3J3-1) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Return 0 (A1J5-8) |
00 |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
A0 |
B0 |
Return 1 (A1J5-7) |
01 |
11 |
21 |
31 |
41 |
51 |
61 |
71 |
81 |
91 |
A1 |
B1 |
Return 2 (A1J5-6) |
02 |
12 |
22 |
32 |
42 |
52 |
62 |
72 |
82 |
92 |
A2 |
B2 |
Return 3 (A1J5-5) | 03 |
13 |
26 |
33 |
43 |
53 |
63 |
73 |
83 |
93 |
A3 |
B3 |
Return 4 (A1J5-4) |
04 |
14 |
24 |
34 |
44 |
54 |
64 |
74 |
84 |
94 |
A4 |
B4 |
Return 5 (A1J5-3) |
05 |
15 |
25 |
35 |
45 |
55 |
65 |
75 |
85 |
95 |
A5 |
B5 |
Return 6 (A1J5-2) |
06 |
16 |
26 |
36 |
46 |
56 |
66 |
76 |
86 |
96 |
A6 |
B6 |
Return 7 (A1J5-1) |
07 |
17 |
27 |
37 |
47 |
57 |
67 |
77 |
87 |
97 |
A7 |
B7 |
3.6 Lamp Matrix
Finally, Gottlieb employed a lamp matrix starting with the System 3 platform. The System 3 lamp matrix consists of a maximum of 108 controlled lamps. There are a total of 12 lamp strobes and 8 lamp returns. The strobe lines start at 0, increment consecutively to 9, and two more strobes are added named A and B respectively. The return lines start with 0 and end with 7. It is extremely rare, if it even occurs, where every lamp in the matrix is used on any one System 3 game. Gottlieb rarely used the System 3 lamp matrix to its full capacity.
Just like the System 3 switch numbering system, the lamp numbers have the same naming convention. The first number of the lamp is its strobe number, while the second number is the lamp's return number. An example would be lamp 62. Switch 62 is located on strobe 5 and return 4 of the lamp matrix.
As mentioned in the switch matrix section, there is one aspect of the Gottlieb System 3 lamp matrix which makes it markedly different from any other manufacturer. The System 3 lamp strobe lines and the switch strobe lines are shared by the same lines. All lamp strobes originate at connector A3J3 of the driver board, and all lamp returns are connected to A3J4 of the driver board. Troubleshooting a lamp matrix problem is less of an issue than troubleshooting a switch matrix issue.
There are some odd instances where standard 44 / 47 lamps are not located on the lamp matrix for some odd reason. A particular game which comes to mind is Wipeout. The three pop bumper lamps used in Wipeout are controlled by solenoid drivers. The voltage for these lamps originate from the solenoid bus, and is reduced from 20vdc to ~6vdc via a remotely mounted power resistor board under the playfield. It is uncertain why Gottlieb did this.
Strobe 0 (A3J3-9) |
Strobe 1 (A3J3-10) |
Strobe 2 (A3J3-11) |
Strobe 3 (A3J3-12) |
Strobe 4 (A3J3-13) |
Strobe 5 (A3J3-14) |
Strobe 6 (A3J3-6) |
Strobe 7 (A3J3-5) |
Strobe 8 (A3J3-4) |
Strobe 9 (A3J3-3) |
Strobe A (A3J3-2) |
Strobe B (A3J3-1) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Return 0 (A3J4-1) |
00 |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
A0 |
B0 |
Return 1 (A3J4-2) |
01 |
11 |
21 |
31 |
41 |
51 |
61 |
71 |
81 |
91 |
A1 |
B1 |
Return 2 (A3J4-3) |
02 |
12 |
22 |
32 |
42 |
52 |
62 |
72 |
82 |
92 |
A2 |
B2 |
Return 3 (A3J4-4) | 03 |
13 |
26 |
33 |
43 |
53 |
63 |
73 |
83 |
93 |
A3 |
B3 |
Return 4 (A3J4-6) |
04 |
14 |
24 |
34 |
44 |
54 |
64 |
74 |
84 |
94 |
A4 |
B4 |
Return 5 (A3J4-7) |
05 |
15 |
25 |
35 |
45 |
55 |
65 |
75 |
85 |
95 |
A5 |
B5 |
Return 6 (A3J4-8) |
06 |
16 |
26 |
36 |
46 |
56 |
66 |
76 |
86 |
96 |
A6 |
B6 |
Return 7 (A3J4-9) |
07 |
17 |
27 |
37 |
47 |
57 |
67 |
77 |
87 |
97 |
A7 |
B7 |
3.7 Power Supplies
All System 3 games use at least two power supplies, and in the case of DMD games, three total.
The first power supply is for the +5VDC logic voltage. This power supply is essentially the same as the System 80B power supply, except the connections are different, (.156" header pins vs. Mini-Fit connectors). The System 3 power supply has practically the same set of issues as the System 80B power supply. First, it does not have a crow bar circuit. If the LM338K voltage regulator fails, and fails whereas the voltage increases drastically, it can destroy electronic components on the other circuit boards. Secondly, heat is still dissipated throughout the board. Finally, the adjustable potentiometer (pot) on the power supply is prone to failure, due to dirt, dust, and contaminants. The latter problem can easily be overcome, and will be addressed in the Recommended Repairs for the System 3 Power Supply Board section below. Connectors on the power supply are not much of an issue if at all. Although, if the board is being taken out of the game for repairs, inspect the solder connections.
The second power supply is the auxiliary power supply. This board is used in earlier System 3 games, where a small auxiliary sound board is used. The auxiliary power supply is not much different from the System 80B auxiliary power supply used in games from Bad Girls and newer. The primary functions of this board is used to power the sound boards, and amplify the audio output. A breakdown of the voltages supplied by the auxiliary power supply are as follows:
- -12 VDC
- +12 VDC
The next power supply is the System 3 2nd generation auxiliary power supply.
+++explain further++++
Finally, the last board is not actually a power supply. It is the System 3 DMD controller board. The reason it is being discussed here in part, is because this board is actually split into two sections. The upper portion of the board generates the necessary voltages to power the dot matrix display, while the lower portion handles all of the logic level responsibilities. The voltages which the DMD controller board generates is:
- +62 VDC
- -100 VDC
- -112 VDC
3.8 CPU Board
stub
3.9 Driver Board
stub
3.10 Sound Boards
stub
3.11 Display Boards
3.11.1 Alphanumeric Displays
3.11.2 Dot Matrix Displays
Starting with Super Mario Bros. in 1992, Gottlieb System 3 games used the industry standard 128 x 32 dot matrix display (DMD). All System 3 games thereafter used a DMD, although, this was not the case with System 3 "mini" pinball / redemption games, like Super Mario Bros. Mushroon World and Bullseye, which still used alphanumeric Futaba displays. Presumably, this was done to keep costs down.
3.11.3 Dot Matrix Display Controller Board
System 3 dot matrix displays (DMD) are powered and controlled by a display controller board located in the backbox. Looking at the board's physical layout, the board is essentially split into two sections. The upper portion of the board rectifies and outputs all of the high voltage values necessary for a DMD to function. The lower portion of the board handles all of the logic and data for the display.
3.12 Solenoids and Relays
stub
3.13 Flippers
Like all the other solenoids used in a System 3 game, Gottlieb beefed the power up to 48VDC versus the 24VDC of former Gottlieb platforms. Equally, the flipper assembly was completely redesigned with a more "modern" flipper bat, and completely different mechanicals. Parts for the System 3 flippers are not backward compatible with any previous Gottlieb platforms. This is partially due to the flipper coil having a larger "footprint" than older flipper coils.
GTB Sys3 used a slightly different approach to enable the flippers. Well, slightly different from other manufacturers, but the same as all previous GTB systems. The difference being that GTB did not use an encapsulated flipper relay on a circuit board. Instead, an open cage relay was used. Power to the flippers is enabled by a single switch on the game over (Q) relay. The same switch powers other coils on the playfield. The Q relay is typically located on the bottom of the cab on the right between the transformer panel and the "power box". The other relays used for tilt (T) and lampbox GI illumination (A) are normally banked with the Q relay. Like any other relay or coil, the Q relay is enabled by a MOSFET on the driver board.
3.13.1 Flipper Sensor Board
Another thing new to System 3 is the use of a flipper sensor board. The purpose of the sensor board is to determine when a flipper coil was enabled via the flipper cabinet switch, convert the 48v signal to a manageable voltage for the switch matrix via an MCT6 optocoupler, and then send the signal back the return line of the switch matrix. Gottlieb games had no way of determining this distinction before, unless a secondary switch from the switch matrix was placed on the switch stack with the flipper EOS switch. The flipper sensor board inputs are wired with 48v, and the left and right flipper coils' lug with the non-banded side of the diode. The flipper cabinet switches are wired to this same flipper coil lug, and when closed, complete the circuit to ground.
3.14 Smart Switches
Starting with Operation Thunder, Gottlieb started using Smart Switches. Smart Switches are a design, developed in-house by John Buras, and used to combat against common switch failures from moisture or contaminants. These switches are unlike traditional leaf switches or microswitches, because they do not use contacts which physically meet for a switch closure to occur. Instead, Smart Switches use a piezo film sensor to detect switch closures.
+++Add more operational technical detail later+++
Smart Switches are used in varying applications, such as lane rollovers, pop bumpers, and stationary (stand up) targets. In most instances, these switches hold up quite well. The exception are the stationary targets, which have a tendency to fail the most. Some Smart Switches are still available; however, the many different configurations, especially with stationary targets, are becoming limited. On the plus side, a standard, stationary target can be used in place of one which used a Smart Switch. Likewise, any other Smart Switches can be replaced with standard leaf switches or microswitches.
Smart Switches are unfortunately non-adjustable. When there is a switch failure, there really is nothing which can be done, except replacement of the switch.
4 Problems and Solutions
4.1 Connectors
4.2 Ground Upgrades
Even though Gottlieb got most everything else right with System 3, it was plagued with ground issues just like every other Gottlieb platform. The System 3 ground connections at the transformer panel are very similar to some System 80Bs, where all of the ground wires are plugged into a small board. This board is fastened to the side of the transformer panel's metal chassis. The purpose of the ground upgrades is to remove the ground board, which takes one more potentially failed connection out of the equation. The grounds will then be secured directly to the transformer chassis via solderless eyelet crimp connectors.
It should be noted that these ground upgrades were initially recommended and published on the Internet by John Robertson of John's Jukes. Below are the steps to properly upgrade the grounds.
The side of the transformer panel chassis where the ground bus board was connected. In addition to the ground connections coming from the playfield, backbox, and driver board, there is a ground connection on the transformer panel too. It is not necessary to remove the transformer panel from the game. This panel was being serviced on the bench. Note that the transformer panel is typically zinc coated metal. This unit was painted, which is not the norm. Solderless ring terminals will be crimped onto the ground wires. The connections used in this particular application are Motormite #85443. Motormite brand does not have to be used. This particular brand and part number are mentioned due to the difficulty in finding the correct connectors to use. Most common ring terminals have a #10 or larger screw eyelet, which will not work effectively, if the eyelets are fastened to the side of the transformer panel chassis. The ring terminals shown here are made for #12-#10 gauge wire with an eyelet for a #8 screw. #12-#10 terminals with a ring size for a #6 screw / stud are better suited, but more difficult to readily source. The ground wires are then twisted and crimped together, From experience, a maximum of 4 larger gauge wires can be crimped in one connection. Lighter gauge wires can be paired with or without heavier gauge wires, and the maximum effective grouping of wires increases slightly. Keep wires which were common to one connector together (driver board ground wires, playfield ground wires, and backbox ground wires). In doing this, future disassembly will be possible, should any of the individual wiring harnesses need attention. Unscrew the transformer panel from the bottom of the cabinet, and turn it on its side. This will allow better access to secure the ring terminals to the side of the chassis. The screws removed from the ground bus board can be reused. Additional #6-32 screws may be needed. Equally, some of the holes in the side of the chassis may need to be tapped, if more than 2 holes are used. Pay close attention when securing the transformer panel to the cabinet. One screw mount, typically the back left mount, (as viewed from the coin door), will have green-yel ground wires attached to an eyelet. This eyelet connection *must* be secured to the transformer panel. Otherwise, there will not be an earth ground connection for the transformer panel.
An optional place to secure the ground wire eyelets is to the back left screw, which secures the transformer panel to the cabinet. In this case, the more common solderless crimp connectors for #12-#10 gauge wire and a #10 screw eyelet can be used. Keep in mind that the ground wires for the transformer panel will still need a crimp terminal with a smaller eyelet. These wires are extremely short, and cannot be secured anywhere else, unless a hole is drilled and tapped on the top side of the transformer panel chassis. If drilling anywhere into the transformer panel chassis, be careful not to drill into the wiring located underneath the panel.
4.3 Power Problems
4.3.1 Line Voltage
4.3.2 Low Voltage
4.3.2.1 +5VDC Logic Voltage
Logic voltage issues start with the +5vdc power supply. A simple fix is to replace the 500 ohm 1 watt pot used to adjust the +5vdc. The original factory pot was a not a sealed pot. Dirt, dust and contaminants can get into the pot and foul it. The result is either dead spots on the pot, or total failure.
4.4 MPU boot issues
A very common issue with the System 3 platform is a message displayed on the DMD upon turning the power on. It can be common to see a "Check U3 or U6 error" upon attempted booting of the CPU. In most cases, this message is essentially telling the user that the lithium battery on the CPU board has failed.
4.4.1 Relocating the battery from the MPU board
The System 3 platform is probably one of the rare occasions where is it not recommended to move the battery off the CPU board. The System 3 CPU board's memory can be a little finicky, and in some instances a remote battery pack will not work. The best method is to cut the existing battery off the CPU board, and solder a lithium battery holder in its place. After the battery holder is in place, a common replacement "button" type lithium battery can be used.
However, if a remote battery pack is chosen as the back up power for the non-volatile ram, use only two AA batteries instead of three. A blocking diode is not necessary to be placed in circuit with the remote battery pack.
4.4.2 Repairing Alkaline Corrosion
4.4.3 Connecting a logic probe to the MPU
4.4.4 Using a PC Power Supply For Bench Testing
4.5 Game resets
4.6 Solenoid problems
4.7 Lamp problems
If your game is burning up lots of lamps quickly, check your voltage setting underneath the playfield. A setting of 110v can cause bulbs to burn out too quickly, 120v fixes the issue.
4.8 Switch problems
4.9 Display problems
4.9.1 Alphanumeric Displays
4.9.2 Dot Matrix Displays
4.10 Sound problems
4.11 Flipper Problems
Since the System 3 flippers are not solid state controlled, the procedure for troubleshooting a failing flipper is essentially the same process as all previous Gottlieb platforms.
4.11.1 Flipper Not Functioning
When flippers are not functioning at all, the first determination which has to made is whether the problem is mechanical or electrical in nature.
4.11.2 Flipper Loss of Power
Likewise, flippers can become weak due to mechanical or electrical issues. The most common sources for weak flippers are due to either pitted / fouled EOS or flipper button cabinet switches. Both of these switch styles can be burnished with an ignition file to dress the switch contact faces. If switches are severely pitted, replacement is recommended.
As for mechanical issues, it is common for System 3 flippers to crack or break their associated flipper bushing. Replacement of broken flipper bushings is recommended.
Flipper flutter--Check the EOS switch to verify that the wires don't have a cold solder joint issue.
4.11.3 Flipper Sensor Board
If a flipper sensor board fails or malfunctions, the flippers will not be disabled. However, making selections in game test mode, bookkeeping, changing game adjustments, entering high score initials at the end of the game, and choosing selections during game play via the flippers will not be possible.
The components used on the sensor board are minimal. If a sensor board is suspected as the core of an issue, removing the board and testing the components on the board is recommended. Equally, bad grounds could be the source of why the sensor board is not properly working. Components on the sensor board need a logic ground to function properly. Make certain the ground on the board has continuity between it and the transformer panel's metal case located in the bottom of the cabinet. Pins 5 and 8 of the U1 (MCT6) optocoupler on the sensor board are the ground reference.
4.12 Pop bumper problems
5 Repair Logs
Did you do a repair? Log it here as a possible solution for others.