Difference between revisions of "Bally/Stern"
Stevekulpa (talk | contribs) |
Stevekulpa (talk | contribs) |
||
Line 48: | Line 48: | ||
'''Bally Solenoid Driver''' | '''Bally Solenoid Driver''' | ||
− | First off, everything mentioned on this page is in reference to the Bally AS-2518-22 model solenoid driver board, found in most Bally pins from 1977 through 1985. Since it is very silmilar to the AS-2518-16 board and is identical as far as the operation of the solenoid driver circuits, you can assume it is applicable for these boards as well. | + | First off, everything mentioned on this page is in reference to the Bally [http://stevekulpa.net/pinball/as-2518-22.jpg AS-2518-22] model solenoid driver board, found in most Bally pins from 1977 through 1985. Since it is very silmilar to the [http://stevekulpa.net/pinball/as-2518-16.jpg AS-2518-16] board and is identical as far as the operation of the solenoid driver circuits, you can assume it is applicable for these boards as well. |
Second, if all this is Greek to you and you have no idea how Decoder ICs work, or what a Transistor is, take a look at the Bally Solenoid Driver for Dummies article above first to learn the basics of how this stuff works. | Second, if all this is Greek to you and you have no idea how Decoder ICs work, or what a Transistor is, take a look at the Bally Solenoid Driver for Dummies article above first to learn the basics of how this stuff works. |
Revision as of 09:19, 22 April 2011
Note: This page is a work in progress. Please help get it to a completed state by adding any useful information to it. |
1 Introduction
Put system info here
2 Games
Put list of games that used this system here (including anything that might not have been pinball)
3 Technical Info
Things like Data East's controller board was a copy of William's System 11 with some changes would go here.
Bally Solenoid Driver for Dummies
First off, take a look at the picture below:
http://stevekulpa.net/pinball/ballycoil1.jpg
This is a typical Bally coil from a Mata Hari machine. Notice 3 things: The two big fat yellow wires going to one lug, the small skinny wire going to the other lug, and the diode connected to the two lugs.
One lug on every coil is visited by these fat wires, in what's called a daisy-chain. This is the wire that supplies each coil with positive 43 volts DC (+43VDC). So each coil is connected to the +43VDC bus. Most have two fat wires, but some may have one. Flipper coils have these wires too, but they are connected a little differently, and are discussed elsewhere. For now, just assume we're talking about regular solenoids here.
Next, you'll notice each coil has a small skinny wire on the other lug. This wire goes to the control circuits on the solenoid/regulator board. In order to energize the coil, there must be a path to ground for the +43VDC. Normally, there is not so the coil is relaxed. When the small skinny wire gets connected to ground, the path is complete and current will flow. This current flow turns the coil into an electro-magnet and then pulls the plunger into the coil. When the wire is disconneted from ground, current flow stops, the electro-magnet is turned off, and the plunger returns to it's normal position, with help from either a spring, or gravity.
Finally, the diode. When the current is quickly turned off on an energized coil, the magnetic field around the coil collapses quickly and causes the coil to generate a huge voltage spike. The job of this diode is to prevent the majority of this spike from reaching the solenoid driver circuity. If the diode is bad, or installed backwards, you'll pop the driver transistor the first time the coil is energized, then released. It's like the ignition in older cars - when the points open, the 12 volts is removed from the car's coil quickly, which causes another coil to generate a huge voltage spike, to the spark plug. The computer program that runs the machine also tries to limit this spike by turning off the coil near the zero crossing of the line AC. This helps because the DC that drives the coils is rectified, but not filtered, so it's not smooth DC, but "humpy", like in this picture. By energizing the coils just after the zero crossing, the in-rush of current caused by a coil is limited, and by turning them off just after the zero crossing, the voltage spike caused by the collapsing field is also kept to a minimum.
So, in the simplest form, the solenoid driver circuits in your Bally look like this:
http://stevekulpa.net/pinball/bsoledraw1.jpg
Look at it as a bunch of coils all connected to the +43VDC bus, and the other lugs going to switches which are also connected to ground. Then, if you were to close a switch, that would connect the circuit from +43VDC to ground, and the coil would energize as long as the switch is closed.
http://stevekulpa.net/pinball/bsoledraw2.jpg
Now see how the circuit is complete due to the switch being closed, and the coil is energized. Then you open the switch and the coil turns off and you're back to the first picture. If the diode were not there, when you opened the switch, there's be a big arc across the switch contacts at the moment they opened up.
Finally, take this one step further and replace the manual switches with transistors. Transistors are normally used as amplifiers, but you can also use them as switches too. There are 3 leads on a transistor, the base, the emitter, and the collector. For NPN transistors like the ones on your Bally solenoid driver, you can used the emitter and collector like a switch. With no current supplied to the base, there is no current flow between the collector and emitter, so the transistor switch is open, or OFF. If you supply a current to the base, current will then flow between the collector and emitter, so now the switch is closed, or ON.
http://stevekulpa.net/pinball/bsoledraw3.jpg
Without getting into too much detail - what happens is a current is applied to the base which is high enough to 'saturate' the transistor. This means the collector-to-emitter current will be amplified as high as it can, and the transistor will then conduct a large amount of current from COLLECTOR to EMITTER, in relation to the current flow from the BASE to the EMITTER. This is how it acts like a switch. The base goes high to turn it on, and low to turn it off. Since the collector is connected to the wire that goes to the coil (the small single wire), and the emitter is connected to ground, turning the transisor as the effect of connecting the collector to ground. This completes the circuit to the coil and it fires.
You may have heard that you can test a coil by grounding the tab on the coil's driver transistor. For the TIP-102 transistors used in the Bally solenoid driver, the metal tab is connected to the collector. Knowing this, and what you've just learned, you can now see that grounding the tab is the same as grounding the collector, which will complete the circuit to ground and fire the coil. Note that this test only tests the wiring from the solenoid driver to the coil. It DOES NOT test the transistor, or any circuitry before the transistor.
So, you can now replace the transistor and "control signal" in the simplified drawing above, with the actual circuit found on the page you just came from, and get an idea how the entire driver circuit works.
Bally Solenoid Driver
First off, everything mentioned on this page is in reference to the Bally AS-2518-22 model solenoid driver board, found in most Bally pins from 1977 through 1985. Since it is very silmilar to the AS-2518-16 board and is identical as far as the operation of the solenoid driver circuits, you can assume it is applicable for these boards as well.
Second, if all this is Greek to you and you have no idea how Decoder ICs work, or what a Transistor is, take a look at the Bally Solenoid Driver for Dummies article above first to learn the basics of how this stuff works.
Thirdly, this model of solenoid driver board actually has three functions: The first obviously is to drive the solenoid and relay coils of your pin, the second is a 5-volt regulator which provides a nice and steady 5 VDC to the other boards for their various logic circuits, and third is the high voltage regulator (190 VDC) for the display driver boards. I won't be discussing the voltage regulator stuff here, just the solenoid driver parts.
Finally, Don't forget that the Solenoid Driver board contains the high voltage circuitry for the displays. There is 190 volts DC here and if you're not careful, you'll get knocked on your ass. A shock from 190 volts DC will hurt. If you don't know what you're doing, then keep away from it and have a professional fix it instead. In addition to high voltages, there are static sensitive parts on this board, so if you're going to work on it, be sure to properly ground yourself before touching the board, and always work in a static-free workspace.
4 Problems and Fixes
4.1 Power Driver Issues
This may not apply to some, as MPU might have been part of it.
4.2 MPU Issues
4.3 Power Supply Issues
4.4 Display Driver Board
Possibly doesn't apply to some, can't think of an example.
5 Game Specific Problems and Fixes
Example would be servo controller on Independence Day pinball
6 Repair Logs
Did you do a repair? Log it here as a possible solution for others.